The Immediate Effects of the Posterolateral Fibular Glide Mobilization with Movement Following a Lateral Ankle Sprain

Jessica Nash DAT, LAT, ATC
Kevin M. Schroeder DAT, ATC
Disclosures

• The opinions, viewpoints and recommendations contained in this presentation represent those of the authors alone and do not represent the opinions, viewpoints or recommendations of any organization in which the author(s) may be affiliated, including, without limitation, the USOC or CCOE.

• The author(s) have no conflicts of interest or financial connection to any of the techniques discussed herein.
Outline

• Introduction & Background
• Mulligan Concept
 – Positional Fault Theory
 – Mobilization with Movement
 – Guiding Principles
 – Posterolateral Fibular Glide
 – Fibular Repositioning Tape

• Case Series
 – Patients/Researchers
 – Outcome Measures
 – Intervention
 – Results

• Conclusion
• Prevalence of Ankle Sprains
 – Doherty et al 2014

• Treatment of Ankle Sprains
 – Kaminski et al 2013
The Mulligan Concept (MC)

• Theory
 – Positional Fault
 • Hubbard, Hertel, & Sherbondy (2006)
 • Hubbard & Hertel (2008)

Original article

Anterior positional fault of the fibula after sub-acute lateral ankle sprains

Tricia J. Hubbarda,*, Jay Hertelb

aDepartment of Kinesiology, University of North Carolina, 9201 University City Blvd., Charlotte, NC 28223, USA
bKinesiology Program, University of Virginia, Charlottesville, VA 22904, USA
Mobilizations with Movement (MWM)

Sustained passive accessory force/glide to resolves the patient’s pain as they actively move the body part through the previously painful movement

Mulligan 1993, 2010
Guiding Principles

PILL
- Pain-free
- Immediate
- Long
- Lasting

CROCKS
- Contraindications
- Repetitions
- Over-Pressure*
- Communication
- Knowledge
- Sustained

*Hing et al 2015, Mulligan 1993, 2010
Posterolateral Fibular Glide (PLFG)

• **Position:**
 - Patient: Supine or long seated with foot and ankle off the table
 - Clinician: at the foot end of the patient
 - Medial hand: stabilize
 - Lateral hand: using the thenar eminence, glide the distal end of the fibula obliquely (posterior, lateral, proximal)

• **MWM**
 - Patient actively inverts while in plantar flexion*
 - Clinician sustains the glide

Mulligan 1993, 2010; Hing et al 2015
Fibular Repositioning Tape (FRT)

- Positions: same as treatment
- Tape applied obliquely
 - Start anterior distal fibula
 - Spiral posteriorly and cranially around the lower leg

Mulligan 1993, 2010; Hing et al 2015
Original article

A study of the effects of Mulligan’s mobilization with movement treatment of lateral ankle pain using a case study design

T. O’Brien, B. Vicenzino

Department of Physiotherapy, University of Queensland, Brisbane, Australia
The Role of Fibular Tape in the Prevention of Ankle Injury in Basketball: A Pilot Study

Kym Moiler, BSc¹
Toby Hall, MSc, Postgrad Dip Manip Ther²
Kim Robinson, BSc, Grad Dip Manip Ther²
CASE REPORT

A MODIFIED MOBILIZATION-WITH-MOVEMENT TO TREAT A LATERAL ANKLE SPRAIN

Heather Mau, MS, ATC¹
Russell T. Baker, DAT, ATC²
Case Series

Purpose:
To examine the immediate effect of the Mulligan Concept posterolateral fibular glide MWM on pain and function in patients who met the criteria for a Grade I lateral ankle sprain.
Methods

• Patients
 – Assessed with Grade I lateral ankle sprain
 – All athletically active
 – Sustained injury during participation

• Clinicians
 – Completion of multiple Mulligan Concept courses

Doctor of Athletic Training Program
Outcome Measures

- Numeric Pain Rating Scale (NPRS)
- Range of Motion (ROM)
- Y-Balance Test (YBT)
- Global Rating of Chance (GRoC)*

*only administered 24-hours post-intervention
• Assessment
• Intervention:
 – Mulligan Concept PLFG MWM
 – Fibular Repositioning Tape
• 24-hour follow-up
Results

• N=10 (8 male, 2 female)
• Participated within 2.5±2.1 days of the inciting injury
 – No physical activity for 24-hr
Results

• MCIDs:
 – YBT: 3.5% (Chimera 2015)
 – ROM: ankle DF 3.7-3.8 degrees (Konor 2012)
 – GROC: 1.3-2.7 (Kamper 2009)
 – NPRS: 2 (Farrar 2001)
<table>
<thead>
<tr>
<th>Time</th>
<th>Best Pain</th>
<th>Worst Pain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Test</td>
<td>2.6±1.6</td>
<td>7.1±1.7</td>
</tr>
<tr>
<td>Post-Test (24 hr.)</td>
<td>0.8±1.2</td>
<td>4.7±2.4</td>
</tr>
</tbody>
</table>
Numeric Pain Rating Scale

<table>
<thead>
<tr>
<th>WORST</th>
<th>Change in NPRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Test</td>
<td>24-Hr Post-Test</td>
</tr>
<tr>
<td></td>
<td>-2.4*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BEST</th>
<th>Change in NPRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Test</td>
<td>24-Hr Post-Test</td>
</tr>
<tr>
<td></td>
<td>-1.8</td>
</tr>
</tbody>
</table>
Numeric Pain Rating Scale

<table>
<thead>
<tr>
<th>CURRENT</th>
<th>Change in NPRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Test</td>
<td>Immediate Post-Test</td>
</tr>
<tr>
<td>Pre-Test</td>
<td>24-Hr Post-Test</td>
</tr>
<tr>
<td>Immediate Post-Test</td>
<td>24-Hr Post-Test</td>
</tr>
</tbody>
</table>

*Denotes Clinically Significant Change
GRoC

• Global Rating of Change
 – 24-hr Post: 5.1±1.5

☐ A very great deal worse (-7) ☐ About the same (0) ☐ A very great deal better (7)
☐ A great deal worse (-6)
☐ Quite a bit worse (-5)
☐ Moderately worse (-4)
☐ Somewhat worse (-3)
☐ A little bit worse (-2)
☐ A tiny bit worse (-1)

☐ A great deal better (6)
☐ Quite a bit better (5)
☐ Moderately better (4)
☐ Somewhat better (3)
☐ A little bit better (2)
☐ A tiny bit better (1)
Y-Balance Test

<table>
<thead>
<tr>
<th></th>
<th>Pre-</th>
<th>Post-</th>
<th>Difference in Means</th>
<th>% Change in Means</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ant-Injured</td>
<td>52.85±20.55</td>
<td>58.8±9.66</td>
<td>5.95</td>
<td>1.11</td>
</tr>
<tr>
<td>Ant-Uninjured</td>
<td>60.3±7.20</td>
<td>60.1±6.31</td>
<td>-0.2</td>
<td>1.00</td>
</tr>
<tr>
<td>PM-Injured</td>
<td>75.85±29.91</td>
<td>94.25±13.15</td>
<td>18.4</td>
<td>1.24</td>
</tr>
<tr>
<td>PM-Uninjured</td>
<td>89.85±11.49</td>
<td>92.55±13.94</td>
<td>2.7</td>
<td>1.03</td>
</tr>
<tr>
<td>PL-Injured</td>
<td>96.1±13.66</td>
<td>97.05±11.48</td>
<td>0.95</td>
<td>1.01</td>
</tr>
<tr>
<td>PL-Uninjured</td>
<td>97.7±11.75</td>
<td>99.75±15.1</td>
<td>2.05</td>
<td>1.02</td>
</tr>
</tbody>
</table>
Y-Balance Test

• Paired t-Test
 – \(\alpha = 0.05 \)

<table>
<thead>
<tr>
<th></th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ant-Injured</td>
<td>0.25</td>
</tr>
<tr>
<td>Ant-Uninjured</td>
<td>0.89</td>
</tr>
<tr>
<td>PM-Injured</td>
<td>0.08</td>
</tr>
<tr>
<td>PM-Uninjured</td>
<td>0.19</td>
</tr>
<tr>
<td>PL-Injured</td>
<td>0.71</td>
</tr>
<tr>
<td>PL-Uninjured</td>
<td>0.29</td>
</tr>
</tbody>
</table>

No statistically significant changes
Active Range of Motion

<table>
<thead>
<tr>
<th></th>
<th>PRE-UINJ</th>
<th>PRE-INJ</th>
<th>POST-INJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFCT</td>
<td>24.22±1.84</td>
<td>20.56±5.27</td>
<td>23.33±1.18</td>
</tr>
<tr>
<td>DF</td>
<td>28±9.78</td>
<td>25.3±10.53</td>
<td>25.1±8.4</td>
</tr>
<tr>
<td>PF</td>
<td>31.7±9.07</td>
<td>29.2±9.35</td>
<td>31.5±6.31</td>
</tr>
<tr>
<td>IN</td>
<td>24.6±7.21</td>
<td>28.5±13.95</td>
<td>32.4±8.41</td>
</tr>
<tr>
<td>EV</td>
<td>20±5.46</td>
<td>17.3±6.63</td>
<td>21.6±7.31</td>
</tr>
</tbody>
</table>
Active Range of Motion

- **Paired t-Test**
 - $\alpha = 0.05$

<table>
<thead>
<tr>
<th></th>
<th>% Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>DF</td>
<td>2.77</td>
</tr>
<tr>
<td>PF</td>
<td>-0.2</td>
</tr>
<tr>
<td>IN</td>
<td>2.3</td>
</tr>
<tr>
<td>EV</td>
<td>4.3</td>
</tr>
</tbody>
</table>

No clinically significant change
Active Range of Motion

• Paired t-Test
 – $\alpha = 0.05$

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DFCT</td>
<td>p</td>
<td>0.095452009</td>
</tr>
<tr>
<td>DF</td>
<td></td>
<td>0.961475518</td>
</tr>
<tr>
<td>PF</td>
<td></td>
<td>0.393992522</td>
</tr>
<tr>
<td>IN</td>
<td></td>
<td>0.179728916</td>
</tr>
<tr>
<td>EV</td>
<td></td>
<td>0.176643629</td>
</tr>
</tbody>
</table>

No statistically significant changes
Results

• Clinically significant change in pain
 – Worst pain (pre- to 24-hr post): 2.4
 – Current Pain:
 • Pre- to Immediate post: 2.3
 • Pre- to 24-hour post: 2.7
 – NPRS MCID: 2 Farrar 2001
Conclusion

- Positional fault presence
- Importance of pain as a limiting factor
- Need for higher quality studies
 - RCT
Questions?

Email: kmsatc@gmail.com

Email: jessica.nash@bmhs.org

Doctor of Athletic Training Program

University of Idaho
References

References <cont.>

References <cont.>

References <cont.>