Dysfunctional Breathing: the Functional Screening Frequently Forgotten

Rich Patterson MS, ATC
Program Director
Athletic Training Program
University of Charleston
Objectives

- Differentiate between normal and dysfunctional breathing
- Identify paradoxical breathing in a patient population
- Identify various assessment techniques to assist in identification of dysfunctional breathing
- Understand various treatment options for dysfunctional breathing
- Describe how breathing can create or reduce dysfunction

- Breath taking Video
Breathing Testing

- Breathing count (White, 1997)
- Breathing Pause (White, 1997)

<table>
<thead>
<tr>
<th>Number count</th>
<th>%Percentage of Users</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>150+</td>
<td>2</td>
<td>Excellent</td>
</tr>
<tr>
<td>110-149</td>
<td>5</td>
<td>Very Good</td>
</tr>
<tr>
<td>90-109</td>
<td>10</td>
<td>Good</td>
</tr>
<tr>
<td>60-89</td>
<td>35</td>
<td>Fair</td>
</tr>
<tr>
<td>2-59</td>
<td>47</td>
<td>Poor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pause Length</th>
<th>%Percentage of Users</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>60+</td>
<td>3</td>
<td>Excellent</td>
</tr>
<tr>
<td>45-59</td>
<td>6</td>
<td>Very Good</td>
</tr>
<tr>
<td>30-44</td>
<td>22</td>
<td>Good</td>
</tr>
<tr>
<td>15-29</td>
<td>46</td>
<td>Fair</td>
</tr>
<tr>
<td>0-14</td>
<td>23</td>
<td>Poor</td>
</tr>
</tbody>
</table>
Patient Reported Outcome – SEBQ
(Courtney & Greenwood, 2009)

- Self-Evaluation of Breathing Questionnaire
- Scoring
 - (0) Never/not true at all
 - (1) Occasionally/a bit true
 - (2) Frequently/mostly true
 - (3) Very Frequently/very true

<table>
<thead>
<tr>
<th>Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. I get easily breathless out of proportion to my fitness.</td>
</tr>
<tr>
<td>2. I notice myself breathing shallowly.</td>
</tr>
<tr>
<td>3. I get short of breath reading aloud and talking.</td>
</tr>
<tr>
<td>4. I notice myself sighing.</td>
</tr>
<tr>
<td>5. I notice myself yawning.</td>
</tr>
<tr>
<td>6. I feel I cannot take a deep or satisfying breath.</td>
</tr>
<tr>
<td>7. I notice I am breathing irregularly.</td>
</tr>
<tr>
<td>8. My breathing feels stuck or restricted.</td>
</tr>
<tr>
<td>9. My ribcage feels tight and can’t expand.</td>
</tr>
<tr>
<td>10. I notice myself breathing quickly.</td>
</tr>
<tr>
<td>11. I get breathless when I’m anxious.</td>
</tr>
<tr>
<td>12. I find myself holding my breath.</td>
</tr>
<tr>
<td>13. I feel breathless in association with other symptoms.</td>
</tr>
<tr>
<td>14. I have trouble coordinating my breathing when speaking.</td>
</tr>
<tr>
<td>15. I can’t catch my breath.</td>
</tr>
<tr>
<td>16. I feel that the air is stuffy, as if there isn’t enough air in the room.</td>
</tr>
<tr>
<td>17. I get breathless even when resting.</td>
</tr>
<tr>
<td>18. My breath feels like it doesn’t go in all the way.</td>
</tr>
<tr>
<td>19. My breath feels like it doesn’t go out all the way.</td>
</tr>
<tr>
<td>20. My breathing is heavy.</td>
</tr>
<tr>
<td>21. I feel that I am breathing more.</td>
</tr>
<tr>
<td>22. My breathing requires work.</td>
</tr>
<tr>
<td>23. My breathing requires effort.</td>
</tr>
<tr>
<td>24. I breathe through my mouth during the day.</td>
</tr>
<tr>
<td>25. I breathe through my mouth at night while I sleep.</td>
</tr>
</tbody>
</table>
Definition & Background

- Breathing pattern disorder (BPD)
 - Inappropriate breathing that is persistent enough to create symptoms with no apparent organic cause
 - Poor posture
 - Scapular dyskinesis
 - Low back pain
 - Neck pain
 - Temporomandibular joint pain
- The prevalence rate of BPD in the general population has been suggested to be as high as 5-11% in the general population, around 30% in asthmatics, and up to 83% in anxiety suffers. (Courtney 2009)
Breathing Mechanics

- Normal breathing should take little effort
 - 10-14 breaths per minute (Chaitow et al, 2014)
 - 5-6 breaths per minute (White, 1997)
 - Ratio or inspiration to expiration of 1:1.5 – 2 (Chaitow, 2014)
 - 21,000 breaths per day (Courntey, 2009)
 - Diaphragm and chest wall excursion during deep breathing is typically between 4 to 7 cm in healthy patients
Breathing Mechanics – Respiration

- The primary muscle responsible for respiration are the diaphragm, intercostal muscles, scalenes, transverse abdominis, muscles of the pelvic floor and deep intrinsic muscles of the spine (Perri & Halford, 2014)
 - Serves to function as postural function, core stabilizers in addition to respiration

- Accessory muscle
 - Scalenes
 - SCM
 - Upper Trapezius
Breathing Mechanics – Inspiration

- During inspiration the diaphragm moves inferior to increase the pressure in the abdominal cavity while decreasing its volume
 - Initiated in the abdomen, not the chest
- With continued contraction the vertical fibers attached to the lower ribs expand them open in a horizontal direction or “bucket handle” motion
- The dimensions of the thorax expand in all directions as if filling up a balloon

Perri & Halford, 2004
Breathing Mechanics – Inspiration

- Movement of the upper ribs develops in the last phase of inspiration and is commonly known as a “pump handle”

Perri & Halford, 2004
Faulty Breathing Pattern

- Vertical displacement of the sternum instead of widening of the horizontal plane -- “chest breathing”
 - Result of bilateral over activity of the scalenes, trapezius and lavator scapula
 - Most common fault in respiration resulting in:
 - Chronic cervical overstrain
 - Diminished activity of the inter costal muscles
 - Reduced rib motion
 - Increase in pectoralis major and minor, latissimus, serratus anterior and trapezius activity assuming a more respiratory function over postural responsibility

Frank et al, 2013
Breathing Mechanics – expiration

- In quiet respiration – expiration occurs passively
- The diaphragm relaxes and ascends
- The abdominal wall is drawn in towards the spine and the ribs and thorax move down and in
Intra-abdominal Pressure

- Stability of the spine is dependent on the dynamic coordination of numerous synergists and antagonist muscles for precise control (Frank et al., 2013)
- An increase in intra-abdominal pressure (IAP) stabilizes the spine
- The integrated spinal stabilizing system (ISSS) (Kolar, 2006)
 - Balanced co-activation between deep spinal flexors and spinal extensors in the cervical and upper thoracic region
 - The diaphragm, pelvic floor, and transverse abdominis regulate IAP and anterior lumbo-pelvic postural stability (Frank, 2013)
Breathing and Posture

• Since trunk muscles perform both breathing and posture, disruption of one function, can negatively affect the other (Hodges et al, 2007)

• Habitual chronic breathing pattern disorders interfere with normal function of key stabilizing muscles such as transverse abdominis and diaphragm (Chaitow, 20014)
Paradoxical Breathing

- Most severe dysfunction
- Abdomen is drawn in during inspiration and out during expiration
 - Occurs as a temporary reaction to bracing for anticipated action.
 - Stress
 - COPD
 - Habit of holding the abdomen rigid in an attempt to create the appearance of a flat stomach
Assessment
Hi-Lo Breathing Assessment

- Used to assess the movement of the upper rib cage and the lower rib cage/abdomen and determine aspects of breathing such as rate, rhythm, relative motion, and phase relation of upper and lower breathing compartments (Chatiow, Bradley, Gilbert, 2014)
 - Lower hand is related to the movement of the diaphragm
 - Upper hand represents upper chest breathing (scalenes)
Rib Palpation and Assessment

- Palpation of the first rib
 - Patient is placed in a seated position
 - Clinician pulls the trapezius posterior to access the first rib
 - Identification of the bony prominence of the first rib

- Seated Lateral Expansion
 - Patient seated with clinician behind patient
 - Clinician fingers along shafts of ribs 8-10
 - Clinician thumbs on either side of the spine
Breathing Retraining
Primal Reflex Release Technique (PRRT) (Iams, 2005)

- Diaphragm release
 - Patient in a supine position
 - Reach towards the toes by side flexing at the waste
 - Cough loudly one time
 - Repeat for opposite side
Dynamic Neuromuscular Stabilization (DNS)

- Supine with hips and knees flexed to 90 degrees
- Knees shoulder width apart
- Therapist applies a downward pressure in the patient’s groin area
- Patient feels that area of the abdominal wall and presses against the therapist’s fingers.
- The patient practices breathing without relaxation of the lower abdominals
- Goal of reflex stimulation is to set up an experience that transfers into exercise with volitional control (Kolar, 2006)

Frank et al, 2013
Crocodile Breathing

- Retraining the body to breath diaphragmatically
 - Lie prone
 - Inhale through the nose and press the belly into the floor
 - Sides of the bones of your hips and and lower ribs starts to expand
 - Exhale and sink into the floor
Conclusion

- BPDs are associated with anxiety and anxiety is associated with altered motor function, muscle imbalances, postural imbalances, trigger points (Cheitow, 2004)
- Breathing retraining can have a positive effect in normalizing BPD
- There is large number of breathing therapies utilizing a wide range of techniques
- Breathing techniques may be beneficial as an adjunct to the functional evaluation or when traditional treatments have not proved to adequately address a dysfunction
References

Questions